Near-Death High-Frequency Hyper-Synchronization in the Rat Hippocampus

Front Neurosci. 2019 Jul 31:13:800. doi: 10.3389/fnins.2019.00800. eCollection 2019.

Abstract

Near-death experiences (NDE) are episodes of enhanced perception with impending death, which have been associated with increased high-frequency (13-100 Hz) synchronization of neuronal activity, which is implicated in cognitive processes like perception, attention and memory. To test whether the NDE-associated high-frequency oscillations surge is related to cardiac arrest, recordings were made from the hippocampus of anesthetized rats dying from an overdose of the sedative chloral hydrate (CH). At a lethal dose, CH caused a surge in beta band power in CA3 and CA1 and a surge in gamma band power in CA1. CH increased the inter-regional coherence of high-frequency oscillations within and between hippocampi. Whereas the surge in beta power developed at non-lethal chloral hydrate doses, the surge in gamma power was specific for impending death. In contrast, CH strongly suppressed theta band power in both CA1 and CA3 and reduced inter-regional coherence in the theta band. The simultaneously recorded electrocardiogram showed a small decrease in heart rate but no change in waveform during the high-frequency oscillation surge, with cardiac arrest only developing after the cessation of breathing and collapse of all oscillatory activity. These results demonstrate that the high-frequency oscillation surge just before death is not limited to cardiac arrest and that especially the increase in gamma synchronization in CA1 may contribute to NDE observed both with and without cardiac arrest.

Keywords: beta oscillations; chloral hydrate; gamma oscillations; hippocampus; theta oscillations.