High-efficiency directional excitation of spoof surface plasmons by periodic scattering cylinders

Opt Lett. 2019 Aug 15;44(16):3972-3975. doi: 10.1364/OL.44.003972.

Abstract

In this Letter, we propose and experimentally demonstrate a simple but efficient method to excite spoof surface plasmons (SSP) through periodic metallic cylinders at microwave frequencies. The rigorous multiple scattering theory indicates that most of the incident propagating waves can pass the cylinders and be converted into the desired harmonics. Furthermore, by tuning the incident angle, controlling the directions of the excited SSP at different frequencies is also realized. The numerical simulations achieve a bidirectional efficiency of 90% at 9.68 GHz and unidirectional efficiency of 79%-85% at 7.46-9.7 GHz, when the incident angle changes from 60° to 120°. Meanwhile, the maximum contrast ratio between the powers of SSP launched in two opposite directions can reach up to 34 dB. The experimental results under 90° and 77.5° illuminations at 9.68 and 8.56 GHz provide strong support for the coupling mechanism. This method may provide technique support in the SSP-based communication and imaging systems.