Reduction in protein absorption on ophthalmic lenses by PEGDA bulk modification of silicone acrylate-based formulation

Prog Biomater. 2019 Sep;8(3):169-183. doi: 10.1007/s40204-019-00119-x. Epub 2019 Aug 14.

Abstract

The absorption of protein and formation of biofilms on the surface of ophthalmic lenses is one of the factors that destroy their useful performance by causing severe visual impairment, inflammation, dryness and ultimate eye discomfort. Therefore, eye lenses need to be resilient to protein absorption, which is one of the opacity factors in minimizing protein absorption on the lenses. The purpose of this study was to investigate and reduce sediment biotransformation on the surface of the semi-hardened lens based on acrylate by bulk-free radical polymerization method. In this respect, the effect of poly(ethylene glycol) diacrylate (PEGDA) with two different molecular weights of 200 and 600 g/mol on the surface roughness, protein absorption, and hydrophilicity of the lenses were studied. The surface hardness of the lenses, on shore D scale, was measured using a durometer hardness test. The presence of higher molecular weight of PEGDA hydrophilic polymeric monomers reduced the hardness of the lenses. The effect of introducing PEGDA, with two molecular weights, into lens fabrication formulations was studied with respect to their water content parameters and hydrophilicity. The presence of a crosslinker such as poly(ethylene glycol) diacrylates, at two different molecular weights, increased the water content and hydrophilicity of the produced lenses. Surface roughness is associated with the formation of bio-film and accumulation of microorganisms on the surface. Due to the roughness of the lens surface developed in this research, the lenses containing PEGDA 600 exhibited less roughness compared to that of PEGDA 200, which could also affect the absorption of protein. Therefore, according to the results of protein absorption test, the PEGDA 600 lenses showed lower protein absorption, which could be due to their high degree of water absorption and hydrophilicity.

Keywords: Ophtalmic lens; Poly(ethylene glycol) diacrylate; Protein absorption; Silicone acrylate.