Investigation of the Precision in Geodetic Reference-Point Positioning Because of Temperature-Induced Pillar Deflections

Sensors (Basel). 2019 Aug 9;19(16):3489. doi: 10.3390/s19163489.

Abstract

To perform geodetic measurements of displacements of the ground and manmade constructions, stabilised reference points are needed from which control points on the object or its surroundings could be measured. Reference points are most commonly stabilised with reinforced concrete pillars; however, they are not always constructed in an appropriate manner. The influence of temperature variation within a pillar on the position of the fixed screw for forced centring is not negligible and should be considered when performing precise measurements. In this research paper, the displacement of a pillar was calculated as a result of the temperature changes in the pillar, and then an experiment was performed in which the pillar was heated from one side, and the horizontal displacement of the fixed screw for forced centring was measured. Both, calculations and measurements, show that at a temperature difference of 16.2 °C, the fixed screw on a 1.5 m high pillar moves by approximately 1 mm, which is a displacement that should be taken into account in precise measurements.

Keywords: based reference point; calculated displacement; influence of temperature; measured displacement; reinforced concrete pillar; temperature distribution.