Ultrasound-derived Biceps Femoris Long Head Fascicle Length: Extrapolation Pitfalls

Med Sci Sports Exerc. 2020 Jan;52(1):233-243. doi: 10.1249/MSS.0000000000002123.

Abstract

Purpose: This study aimed to compare biceps femoris long head (BFlh) fascicle length (Lf) obtained with different ultrasound-based approaches: 1) single ultrasound images and linear Lf extrapolation, 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B), and 3) extended field of view (EFOV) ultrasound images.

Methods: Thirty-seven elite alpine skiers (21.7 ± 2.8 yr) without a previous history of hamstring strain injury were tested. Single ultrasound images were collected with a 5-cm linear transducer from BFlh at 50% femur length and were compared with whole muscle scans acquired by EFOV ultrasound.

Results: The intrasession reliability (intraclass correlation coefficient [ICC3,k]) of Lf measurements was very high for both single ultrasound images (i.e., Lf estimated by linear extrapolation; ICC3,k = 0.96-0.99, SEM = 0.18 cm) and EFOV scans (ICC3,k = 0.91-0.98, SEM = 0.19 cm). Although extrapolation methods showed cases of Lf overestimation and underestimation when compared with EFOV scans, mean Lf measured from EFOV scans (8.07 ± 1.36 cm) was significantly shorter than Lf estimated by trigonometric equations A (9.98 ± 2.12 cm, P < 0.01) and B (8.57 ± 1.59 cm, P = 0.03), but not significantly different from Lf estimated with manual linear extrapolation (8.40 ± 1.68 cm, P = 0.13). Bland-Altman analyses revealed mean differences in Lf obtained from EFOV scans and those estimated from equation A, equation B, and manual linear extrapolation of 1.91 ± 2.1, 0.50 ± 1.0, and 0.33 ± 1.0 cm, respectively.

Conclusions: The typical extrapolation methods used for estimating Lf from single ultrasound images are reliable within the same session, but not accurate for estimating BFlh Lf at rest with a 5-cm field of view. We recommend that EFOV scans are implemented to accurately determine intervention-related Lf changes in BFlh.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Female
  • Hamstring Muscles / anatomy & histology*
  • Hamstring Muscles / diagnostic imaging*
  • Hamstring Muscles / injuries
  • Humans
  • Male
  • Reproducibility of Results
  • Risk Factors
  • Skiing / injuries
  • Skiing / physiology
  • Ultrasonography / methods
  • Young Adult