Modality-Specific Circuits for Skylight Orientation in the Fly Visual System

Curr Biol. 2019 Sep 9;29(17):2812-2825.e4. doi: 10.1016/j.cub.2019.07.020. Epub 2019 Aug 8.

Abstract

In the fly optic lobe, ∼800 highly stereotypical columnar microcircuits are arranged retinotopically to process visual information. Differences in cellular composition and synaptic connectivity within functionally specialized columns remain largely unknown. Here, we describe the cellular and synaptic architecture in medulla columns located downstream of photoreceptors in the dorsal rim area (DRA), where linearly polarized skylight is detected for guiding orientation responses. We show that only in DRA medulla columns both R7 and R8 photoreceptors target to the bona fide R7 target layer where they form connections with previously uncharacterized, modality-specific Dm neurons: two morphologically distinct DRA-specific cell types (termed Dm-DRA1 and Dm-DRA2) stratify in separate sublayers and exclusively contact polarization-sensitive DRA inputs, while avoiding overlaps with color-sensitive Dm8 cells. Using the activity-dependent GRASP and trans-Tango techniques, we confirm that DRA R7 cells are synaptically connected to Dm-DRA1, whereas DRA R8 form synapses with Dm-DRA2. Finally, using live imaging of ingrowing pupal photoreceptor axons, we show that DRA R7 and R8 termini reach layer M6 sequentially, thus separating the establishment of different synaptic connectivity in time. We propose that a duplication of R7→Dm circuitry in DRA ommatidia serves as an ideal adaptation for detecting linearly polarized skylight using orthogonal e-vector analyzers.

Keywords: Drosophila; circuits; computation; insects; navigation; neuroethology; polarization; skylight; vision.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Drosophila melanogaster / physiology*
  • Optic Lobe, Nonmammalian / physiology*
  • Orientation, Spatial*
  • Photoreceptor Cells, Invertebrate / physiology*