Hierarchical complex self-assembly in binary nanoparticle mixtures

J Phys Condens Matter. 2019 Nov 27;31(47):475102. doi: 10.1088/1361-648X/ab39fd. Epub 2019 Aug 9.

Abstract

Hierarchical self-assembly of soft matter provides a powerful route to create complex materials with enhanced physical properties. The understanding of the fundamental processes leading to such organization can provide design rules to create new functional materials. In this work, we use a simple model of polymer-grafted nanoparticles to explore the self-assembly of binary mixtures. By using Monte Carlo simulations we study the interplay of composition, density and particle sizes on the self-organization of such nanoparticle systems. It is found that complex hierarchical organization can take place for conditions where one-component systems form simple lattices. In particular, a mixture where one component forms a structure with 18-fold symmetry in a sea of an apparent disordered phase of the second component is observed to emerge for certain parameter combinations.