Confinement and localization effects revealed for thin films of the miscible blend poly(vinyl methyl ether)/polystyrene with a composition of 25/75 wt%

Eur Phys J E Soft Matter. 2019 Aug 12;42(8):101. doi: 10.1140/epje/i2019-11870-3.

Abstract

Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface.

Keywords: Topical issue: Dielectric Spectroscopy Applied to Soft Matter.