Structural Characterization and Analysis of High-Strength Laminated Composites from Recycled Newspaper and HDPE

Polymers (Basel). 2019 Aug 6;11(8):1311. doi: 10.3390/polym11081311.

Abstract

Recycled newspaper (NP) shows excellent potential as a reinforcement for polymer composites. Herein, high-strength laminated composites were prepared by using NP laminas as reinforcement and high-density polyethylene (HDPE) films as matrix. Physical and mechanical properties of the laminated composites were measured. It was found that the flexural strength of the composites had a good linear relationship to its density, with R2 = 0.9853. The flexural and tensile strength of the composites at the maximum density (1.40 g/cm3) reached up to 95.6 ± 2.4 MPa and 99.4 ± 0.8 MPa, respectively. SEM results showed that NP layer inside the composite became compact at the hot pressing time of 40 min, because the melted HDPE permeated into the NP layers to bond the NP fibers. Quantitative description of the composite porosity was conducted according to the density of the composite. The 24-h water absorption of the composite was highly related to its porosity, with R2 = 0.8994. This study reveals that density of laminated composites is an important parameter, which could be used to forecast the mechanical strength, and its derived value, porosity of the composites, could be used to predict the water absorption behavior of the composite.

Keywords: density; laminated composites; microstructure; porosity; recycled newspaper.