An advanced FeCoNi nitro-sulfide hierarchical structure from deep eutectic solvents for enhanced oxygen evolution reaction

Chem Commun (Camb). 2019 Sep 4;55(68):10174-10177. doi: 10.1039/c9cc05389a. Epub 2019 Aug 7.

Abstract

A tri-metal material system of FeCoNi-based nitro-sulfide (FeCoNi-NS) hierarchical structure has been successfully synthesized via a deep eutectic solvent annealing process. The as-prepared FeCoNi-NS possesses interesting N,S-binary heteroatoms evenly doped with Fe, Co, and Ni. By taking advantage of the unique structure including multi-metal sites, high BET area and porous structures, the as-prepared FeCoNi-NS exhibited excellent oxygen evolution reaction (OER) performance, achieving a current density of 10 mA cm-2 at an overpotential of 251 mV and a low Tafel slope of 58 mV dec-1 in 1 M KOH. Furthermore, FeCoNi-NS also demonstrated highly efficient mass/charge transportation, long-term stability with 2% deactivation after ten hours continuous operation and high faradaic efficiency of 98%. Such a facile synthetic strategy is applicable to the fabrication of more mutil-metal hierarchical structures for energy conversion and storage.