Towards comparative investigation of Er- and Yb-based SMMs: the effect of the coordination environment configuration on the magnetic relaxation in the series of heteroleptic thiocyanate complexes

Dalton Trans. 2019 Sep 7;48(33):12644-12655. doi: 10.1039/c9dt02260k. Epub 2019 Aug 6.

Abstract

We prepared and studied two similar series of Er and Yb thiocyanates, involving [Ln(H2O)5(NCS)3]·H2O (1Er, 1Yb) as well as the molecular and ionic complexes with 2,2'-bipyridine (bpy) and 1,10-phenantroline (phen), [Ln(H2O)(bpy)2(NCS)3]·0.5(bpy)·H2O (2Er, 2Yb), [Ln(H2O)(phen)2(NCS)3]·phen·0.5H2O (3Er, 3Yb), [Hbpy][Ln(bpy)2(NCS)4]·H2O (4Er, 4Yb) and [Hphen][Ln(phen)2(NCS)4] (5Er, 5Yb). All the complexes were found to exhibit the properties of field-induced single-molecule magnets. For 1Yb, the effective value of the energy barrier for magnetization reversal, Δeff/kB, equals to 50 K, which is among the highest ones currently known for molecular SMMs based on Yb3+. The obtained data are discussed involving essential structural features of the complexes, namely the configuration of the Ln environment, i.e. its composition and geometry as well as mutual distribution of different donating centers. To the best of our knowledge, this work also involves experimental investigation of the largest and thus sufficiently representative series of similar mononuclear SMMs based on Er and Yb within one study.