Utility of 5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1 H-pyrazole-1-carbothioamide in the synthesis of heterocyclic compounds with antimicrobial activity

BMC Chem. 2019 Apr 1;13(1):48. doi: 10.1186/s13065-019-0566-y. eCollection 2019 Dec.

Abstract

Background: Pyrazolines show different biological activities. In recent years, interest in the chemistry of hydrazonoyl halides has been renewed. 1,3,4-Thiadiazoles are one of the most common heterocyclic pharmacophores with a wide range of biological activities.

Results: Ethyl 2-(5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methyl-thiazole-5-carboxylate, 2-(5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one, and 1-(2-(5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)-4-methylthiazol-5-yl)ethan-1-one were synthesized from the reaction of 5-(furan-2-yl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide with different halogenated compounds. Thiazole, 1,3,4-thiadiazole and pyrano[2,3-d]thiazole derivatives were also synthesized. The structures of the newly synthesized compounds were elucidated based on elemental analysis, spectral data, and alternative synthetic routes whenever possible. Additionally, the newly synthesized compounds were screened for antimicrobial activity against various microorganisms.

Conclusions: A new series of novel functionalized 1,3,4-thiadiazoles, 1,3-thiazoles, and pyrazoline-containing moieties were synthesized using hydrazonoyl halides as precursors and evaluated for their in vitro antibacterial, and antifungal activities. The antimicrobial results of the examined compounds revealed promising results and some derivatives have activities similar to the references used.

Keywords: 1,3,4-Thiadiazoles; Antimicrobials; Hydrazonoyl halides; Pyrano[2,3-d]thiazoles; Thiazoles; Urea derivatives.