Cross-Linking Strategies for Electrospun Gelatin Scaffolds

Materials (Basel). 2019 Aug 4;12(15):2476. doi: 10.3390/ma12152476.

Abstract

Electrospinning is an exceptional technology to fabricate sub-micrometric fiber scaffolds for regenerative medicine applications and to mimic the morphology and the chemistry of the natural extracellular matrix (ECM). Although most synthetic and natural polymers can be electrospun, gelatin frequently represents a material of choice due to the presence of cell-interactive motifs, its wide availability, low cost, easy processability, and biodegradability. However, cross-linking is required to stabilize the structure of the electrospun matrices and avoid gelatin dissolution at body temperature. Different physical and chemical cross-linking protocols have been described to improve electrospun gelatin stability and to preserve the morphological fibrous arrangement of the electrospun gelatin scaffolds. Here, we review the main current strategies. For each method, the cross-linking mechanism and its efficiency, the influence of electrospinning parameters, and the resulting fiber morphology are considered. The main drawbacks as well as the open challenges are also discussed.

Keywords: cross-linking; electrospinning; gelatin; nanofibers; natural polymers; regenerative medicine; scaffold; soft tissues; tissue engineering.

Publication types

  • Review