Seawater-Mediated Solar-to-Sodium Conversion by Bismuth Vanadate Photoanode- Photovoltaic Tandem Cell: Solar Rechargeable Seawater Battery

iScience. 2019 Sep 27:19:232-243. doi: 10.1016/j.isci.2019.07.024. Epub 2019 Jul 19.

Abstract

Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery.

Keywords: Electrochemical Energy Conversion; Energy Storage; Materials Characterization.