Preclinical translation of exosomes derived from mesenchymal stem/stromal cells

Stem Cells. 2020 Jan;38(1):15-21. doi: 10.1002/stem.3061. Epub 2019 Oct 1.

Abstract

Exosomes are nanovesicles secreted by virtually all cells. Exosomes mediate the horizontal transfer of various macromolecules previously believed to be cell-autonomous in nature, including nonsecretory proteins, various classes of RNA, metabolites, and lipid membrane-associated factors. Exosomes derived from mesenchymal stem/stromal cells (MSCs) appear to be particularly beneficial for enhancing recovery in various models of disease. To date, there have been more than 200 preclinical studies of exosome-based therapies in a number of different animal models. Despite a growing number of studies reporting the therapeutic properties of MSC-derived exosomes, their underlying mechanism of action, pharmacokinetics, and scalable manufacturing remain largely outstanding questions. Here, we review the global trends associated with preclinical development of MSC-derived exosome-based therapies, including immunogenicity, source of exosomes, isolation methods, biodistribution, and disease categories tested to date. Although the in vivo data assessing the therapeutic properties of MSC-exosomes published to date are promising, several outstanding questions remain to be answered that warrant further preclinical investigation.

Keywords: exosomes; extracellular vesicles; mesenchymal stem cells; mesenchymal stromal cells; microvesicles.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Cells, Cultured
  • Exosomes / metabolism*
  • Humans
  • Mesenchymal Stem Cells / metabolism*