Acidification-induced cellular changes in Symbiodinium isolated from Mussismilia braziliensis

PLoS One. 2019 Aug 5;14(8):e0220130. doi: 10.1371/journal.pone.0220130. eCollection 2019.

Abstract

Dinoflagellates from the Symbiodiniaceae family and corals have an ecologically important endosymbiotic relationship. Scleractinian corals cannot survive for long periods without their symbionts. These algae, also known as zooxanthellae, on the other hand, thrives outside the coral cells. The free-living populations of zooxanthellae are essential for the resilience of the coral to environmental stressors such as temperature anomalies and ocean acidification. Yet, little is known about how ocean acidification may affect the free-living zooxanthellae. In this study we aimed to test morphological, physiological and biochemical responses of zooxanthellae from the Symbiodinium genus isolated from the coral Mussismilia braziliensis, endemic to the Brazilian coast, to acidification led by increased atmospheric CO2. We tested whether photosynthetic yield, cell ultrastructure, cell density and lipid profile would change after up to 16 days of exposure to pH 7.5 in an atmospheric pCO2 of 1633 μatm. Photosynthetic yield and cell density were negatively affected and chloroplasts showed vesiculated thylakoids, indicating morphological damage. Moreover, Symbiodinium fatty acid profile drastically changed in acidified condition, showing lower polyunsaturated fatty acids and higher saturated fatty acids contents, when compared to the control, non-acidified condition. These results show that seawater acidification as an only stressor causes significant changes in the physiology, biochemistry and ultrastructure of free-living Symbiodinium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa / microbiology*
  • Atmosphere / chemistry
  • Carbon Dioxide / analysis
  • Carbon Dioxide / chemistry
  • Carbonates / chemistry
  • Cell Proliferation / drug effects
  • Dinoflagellida / cytology*
  • Dinoflagellida / drug effects
  • Dinoflagellida / metabolism
  • Dinoflagellida / physiology
  • Fatty Acids / metabolism
  • Hydrogen-Ion Concentration
  • Photosynthesis / drug effects
  • Seawater / chemistry

Substances

  • Carbonates
  • Fatty Acids
  • Carbon Dioxide

Grants and funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Agência Nacional do Petróleo, Gás Natural e Biocombustíveis/BRASOIL. GCA, GMAF, LTS, MF, PSS and RLM. received CNPq research productivity fellowships. GMAF, MF and LTS received FAPERJ research productivity fellowships.