Dynamic Relationship of the SNARE Complex with a Membrane

Biophys J. 2019 Aug 20;117(4):627-630. doi: 10.1016/j.bpj.2019.07.010. Epub 2019 Jul 16.

Abstract

Fusion of secretory granules and synaptic vesicles with the plasma membrane is driven by SNARE protein interactions. Intensive investigations in vitro, which include x-ray crystallography, cryoelectron microscopy, and NMR analyses by numerous groups, have elucidated structures relevant to the function of these proteins. Although function depends on the proteins being membrane bound, for experimental reasons, most of the studies have used cytosolic domains, as exemplified by the groundbreaking studies that elucidated the structure of a tetrapeptide helical bundle formed by interaction of the cytosolic domains of syntaxin1A, SNAP25 (two peptides) and synaptobrevin 2. Because the cytosolic fragments were unfettered by membrane attachments, it is likely that the tetrapeptide helical bundle reflects the lowest energy state, such as that found in the "cis" interactions of the SNARE motifs after fusion when they co-localize in the plasma membrane. Much more difficult to study and still poorly understood are critical "trans" interactions between the synaptic vesicle SNARE protein synaptobrevin 2 and the plasma membrane syntaxin1A/SNAP25 complex that initiate the fusion event. In a series of articles from the laboratory of Lukas Tamm, the spontaneous orientation of the SNARE motif of membrane-bound, full-length syntaxin1A with respect to the membrane hosting syntaxin's transmembrane domain was investigated with nanometer precision under a variety of conditions, including those that model aspects of the "trans" configuration. The studies rely on fluorescence interference-contrast microscopy, a technique that utilizes the pattern of constructive and destructive interference arising from incoming and reflected excitation and emission light at the surface of a silicon chip that has been layered with oxidized silicon of varying depths. This Perspective discusses their findings, including the unexpected influence of the degree of lipid unsaturation on the orientation of the SNARE complex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Review

MeSH terms

  • Animals
  • Humans
  • SNARE Proteins / chemistry
  • SNARE Proteins / metabolism*
  • Synaptic Membranes / metabolism*
  • Synaptic Vesicles / metabolism

Substances

  • SNARE Proteins