Resolving population dynamics and interactions of multiple triplet excitons one molecule at a time

J Chem Phys. 2019 Jul 28;151(4):044203. doi: 10.1063/1.5099920.

Abstract

Resolving the population dynamics of multiple triplet excitons on time scales comparable to their lifetimes is a key challenge for multiexciton harvesting strategies, such as singlet fission. We show that this information can be obtained from fluorescence quenching dynamics and stochastic kinetic modeling simulations of single nanoparticles comprising self-assembled aggregated chains of poly(3-hexylthiophene) (P3HT). These multichromophoric structures exhibit the elusive J-aggregate type excitonic coupling leading to delocalized intrachain excitons that undergo facile triplet formation mediated by interchain charge transfer states. We propose that P3HT J-aggregates can serve as a useful testbed for elucidating the presence of multiple triplets and understanding factors governing their interactions over a broad range of time scales. Stochastic kinetic modeling is then used to simulate discrete population dynamics and estimate higher order rate constants associated with triplet-triplet and singlet-triplet annihilation. Together with the quasi-CW nature of the experiment, the model reveals the expected amounts of triplets at equilibrium per molecule. Our approach is also amenable to a variety of other systems, e.g., singlet fission active molecular arrays, and can potentially inform design and optimization strategies to improve triplet harvesting yields.