Urban black carbon - source apportionment, emissions and long-range transport over the Brahmaputra River Valley

Sci Total Environ. 2019 Nov 25:693:133577. doi: 10.1016/j.scitotenv.2019.07.383. Epub 2019 Jul 23.

Abstract

This research investigates whether the vehicular black carbon emissions originated in the North-Eastern city of Guwahati are transported over and in the Brahmaputra River Valley and the Himalayas. The total black carbon was apportioned between the fossil fuel and biomass burning by real-time measurements of black carbon concentrations at two distinct locations having different traffic volumes in 2016-17. The average observed BC concentrations were 20.58, 6.42, 3.50 and 5.29 μg/m3 at the low traffic location and 22.44, 17.14, 9.2 and 16.87 μg/m3 at the high traffic location in winter, pre-monsoon, monsoon and post-monsoon seasons, respectively. Temperature, wind speed, and solar radiation were found to have significant negative correlations with BC concentrations, while relative humidity had positive correlations. It was found that vehicles contributed over 85% of the ambient black carbon at both locations. Black carbon emission from this dominant source was estimated for 2018, which showed that from vehicles it increased to 0.44-0.55 Gg in 2018 from 0.29 to 0.33 Gg in 2011, which may result in the adverse impacts on the eco-sensitive Brahmaputra River Valley and the Himalayas. The transport and deposition of black carbon under different climatic seasons was modelled using HYSPLIT. The results showed that black carbon particulates are being transported and deposited all-round the year in the Himalayas and the surrounding region. Pre-monsoon and monsoon seasons contributed to the largest amounts of deposition, and a clear relation was found between deposition and rainfall. The total BC deposited in the Brahmaputra River Valley and the Himalayas during one year was 22,142.69 kg and 1566.53 kg with average deposition rates of 0.6452 μgm-2 day-1 and 0.0182 μgm-2 day-1, respectively.

Keywords: Aethalometer; Black carbon; Emission inventory; HYSPLIT; Himalayas; Long-range transport.