Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector

Nanomaterials (Basel). 2019 Jul 30;9(8):1094. doi: 10.3390/nano9081094.

Abstract

Agricultural food crop plants interact with engineered nanomaterials (ENMs) from the application of agri-food nanotechnologies and from unintentional emissions originating from other nanotechnologies. Both types of exposure present implications for agricultural yield and quality, food chain transfer, and environmental and human health. In this review, the most recent findings from agricultural plant-ENM studies published in 2017 and 2018 are summarized. The aim of this is to identify the current hazard potential of ENMs for plants grown under typical field conditions that originate from both intentional and unintentional exposures and to contribute to knowledge-based decisions on the application of ENMs in food-agriculture. We also address recent knowledge on ENM adsorption, internalization, translocation, and bioaccumulation by plants, ENM impacts on agricultural crop yield and nutrition, and ENM biotransformation. Using adverse effect level concentrations and data on ENM accumulation in environmental matrices, the literature analyses revealed that C-, Ag-, Ce-, and Ti-based ENMs are unlikely to pose a risk to plants grown under typical field conditions, whereas Cu- and Zn-based ENMs require surveillance. Since multiple factors (e.g., ENM concentration, route of exposure, and plant type) influence the effects of ENMs on plants, biomonitoring is recommended for tracking ENM environmental exposure in the future.

Keywords: agriculture; engineered nanomaterials; nanosafety; nanotechnology; plant phytotoxicity.

Publication types

  • Review