Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo

J Antimicrob Chemother. 2019 Nov 1;74(11):3211-3216. doi: 10.1093/jac/dkz330.

Abstract

Objectives: The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro.

Methods: Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time-kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination.

Results: The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time-kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival.

Conclusions: Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time-kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology*
  • Anti-Bacterial Agents / therapeutic use
  • Azabicyclo Compounds / pharmacology*
  • Bacterial Proteins / genetics*
  • Ceftazidime / pharmacology*
  • Drug Combinations
  • Drug Resistance, Multiple, Bacterial / genetics*
  • Female
  • Humans
  • Kinetics
  • Klebsiella Infections / microbiology
  • Klebsiella pneumoniae / drug effects*
  • Klebsiella pneumoniae / genetics*
  • Klebsiella pneumoniae / pathogenicity
  • Larva / microbiology
  • Microbial Sensitivity Tests
  • Middle Aged
  • Moths / microbiology
  • Phenotype
  • Sepsis / microbiology
  • beta-Lactamases / genetics*

Substances

  • Anti-Bacterial Agents
  • Azabicyclo Compounds
  • Bacterial Proteins
  • Drug Combinations
  • avibactam, ceftazidime drug combination
  • Ceftazidime
  • beta-Lactamases
  • beta-lactamase KPC-3, Klebsiella pneumoniae