Photoresponses of Supported Au Single Atoms on TiO2(110) through the Metal-Induced Gap States

J Phys Chem Lett. 2019 Aug 15;10(16):4683-4691. doi: 10.1021/acs.jpclett.9b01527. Epub 2019 Aug 6.

Abstract

When a metal single-atom (SA) catalyst is supported on a semiconducting photocatalyst, the charge transfer of the photoexcited carriers to metal SAs can provide a synergetic activity for the co-catalysts. Here, we report the interfacial electronic coupling of the Au SAs on the TiO2(110) surface using scanning tunneling microscopy/spectroscopy, in combination with first-principles calculations. Distinct energy and spatial distributions of the metal-induced gap states (MIGSs) are experimentally revealed for the Au SAs adsorbed at the terminal Ti sites and the oxygen vacancies. The localized MIGS below the Fermi level provides a dedicated channel for the transfer of a photoexcited hole from the TiO2 substrate to the adsorbed Au SAs. The hole can weaken the Ti-Au bonding and activate the diffusion of Au SAs. Our results shed light on combining the advantages of photocatalysis and metal SA catalysis using a co-catalyst, which is promising to promote chemical reactions at low temperatures.