Surface Modification of Polycarbonate by an Atmospheric Pressure Argon Microwave Plasma Sheet

Materials (Basel). 2019 Jul 29;12(15):2418. doi: 10.3390/ma12152418.

Abstract

The specific properties of an atmospheric pressure plasma make it an attractive tool for the surface treatment of various materials. With this in mind, this paper presents the results of experimental investigations of a polycarbonate (PC) material surface modification using this new type of argon microwave (2.45 GHz) plasma source. The uniqueness of the new plasma source lies in the shape of the generated plasma-in contrast to other microwave plasma sources, which usually provide a plasma in the form of a flame or column, the new ones provides a plasma in the shape of a regular plasma sheet. The influence of the absorbed microwave power and the number of scans on the changes of the wettability and morphological and mechanical properties of the plasma-treated PC samples was investigated. The mechanical properties and changes in roughness of the samples were measured by the use of atomic force microscopy (AFM). The wettability of the plasma-modified samples was tested by measuring the water contact angle. In order to confirm the plasma effect, each of the above-mentioned measurements was performed before and after plasma treatment. All experimental tests were performed with an argon of flow rate up to 20 L/min and the absorbed microwave power ranged from 300 to 850 W. The results prove the capability of the new atmospheric pressure plasma type in modifying the morphological and mechanical properties of PC surfaces for industrial applications.

Keywords: atmospheric pressure plasma; microwave plasma; polycarbonate; surface modification.