Exosites in Hypervariable Loops of ADAMTS Spacer Domains control Substrate Recognition and Proteolysis

Sci Rep. 2019 Jul 29;9(1):10914. doi: 10.1038/s41598-019-47494-w.

Abstract

ADAMTS (A Disintegrin-like and Metalloproteinase domain with Thrombospondin type 1 Motif)-1, -4 and -5 share the abilities to cleave large aggregating proteoglycans including versican and aggrecan. These activities are highly relevant to cardiovascular disease and osteoarthritis and during development. Here, using purified recombinant ADAMTS-1, -4 and -5, we quantify, compare, and define the molecular basis of their versicanase activity. A novel sandwich-ELISA detecting the major versican cleavage fragment was used to determine, for the first time, kinetic constants for versican proteolysis. ADAMTS-5 (kcat/Km 35 × 105 M-1 s-1) is a more potent (~18-fold) versicanase than ADAMTS-4 (kcat/Km 1.86 × 105 M-1 sec-1), whereas ADAMTS-1 versicanase activity is comparatively low. Deletion of the spacer domain reduced versicanase activity of ADAMTS-5 19-fold and that of ADAMTS-4 167-fold. Co-deletion of the ADAMTS-5 cysteine-rich domain further reduced versicanase activity to a total 153-fold reduction. Substitution of two hypervariable loops in the spacer domain of ADAMTS-5 (residues 739-744 and 837-844) and ADAMTS-4 (residues 717-724 and 788-795) with those of ADAMTS-13, which does not cleave proteoglycans, caused spacer-dependent reductions in versicanase activities. Our results demonstrate that these loops contain exosites critical for interaction with and processing of versican. The hypervariable loops of ADAMTS-5 are shown to be important also for its aggrecanase activity. Together with previous work on ADAMTS-13 our results suggest that the spacer domain hypervariable loops may exercise significant control of ADAMTS proteolytic activity as a general principle. Identification of specific exosites also provides targets for selective inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ADAMTS1 Protein / chemistry*
  • ADAMTS13 Protein / chemistry
  • ADAMTS4 Protein / chemistry*
  • ADAMTS5 Protein / chemistry*
  • Binding Sites
  • Catalytic Domain
  • Humans
  • Kinetics
  • Protein Binding
  • Versicans / metabolism*

Substances

  • VCAN protein, human
  • Versicans
  • ADAMTS1 Protein
  • ADAMTS1 protein, human
  • ADAMTS5 Protein
  • ADAMTS5 protein, human
  • ADAMTS4 Protein
  • ADAMTS4 protein, human
  • ADAMTS13 Protein
  • ADAMTS13 protein, human