Engineering Properties of Engineered Cementitious Composite and Multi-Response Optimization Using PCA-Based Taguchi Method

Materials (Basel). 2019 Jul 28;12(15):2402. doi: 10.3390/ma12152402.

Abstract

The engineered cementitious composite (ECC) mixtures were prepared with Portland cement, ground fly ash, silica sand, and polyvinyl alcohol (PVA) fibers. Accordingly, four mix design factors with five levels each were designed using the Taguchi method. The engineering properties of ECC (flow expansion, compressive strength, flexural strength, charge passed, and maximum freeze-thaw cycle) were evaluated, and the single-response optimizations were conducted separately. Unlike other studies assigning a relative weighting parameter to each response, the principal component analysis (PCA) was innovatively introduced to optimize the ECC's multiple responses so that the single principal performance was obtained from the most objective perspective. Furthermore, the weighting parameters for utility concept were determined by the PCA. Thereafter, an optimum mix formulation was estimated using the PCA-based Taguchi method and the updated utility concept, which provided the most desired balance of these engineering properties. Finally, the contribution of each mix design factor to the principal performance of ECC was examined, and the estimated mix formulation was verified via an additional experiment.

Keywords: Taguchi method; engineered cementitious composite (ECC); multi-response optimization; principal component analysis; principal performance.