CAR T cells for brain tumors: Lessons learned and road ahead

Immunol Rev. 2019 Jul;290(1):60-84. doi: 10.1111/imr.12773.

Abstract

Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.

Keywords: T cells; brain tumors; chimeric antigen receptors; glioblastoma.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antigens, Neoplasm / immunology
  • Brain Neoplasms / immunology*
  • Brain Neoplasms / pathology
  • Brain Neoplasms / therapy*
  • Genetic Engineering
  • Humans
  • Immunity
  • Immunotherapy, Adoptive* / methods
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Antigen, T-Cell / metabolism*
  • Receptors, Chimeric Antigen / genetics
  • Receptors, Chimeric Antigen / metabolism*
  • T-Lymphocytes / immunology*
  • T-Lymphocytes / metabolism*
  • Treatment Outcome

Substances

  • Antigens, Neoplasm
  • Receptors, Antigen, T-Cell
  • Receptors, Chimeric Antigen