Composition of ashes from the combustion of solid fuels and municipal waste in households

J Environ Manage. 2019 Oct 15:248:109269. doi: 10.1016/j.jenvman.2019.109269. Epub 2019 Jul 25.

Abstract

In this study, 73 ash samples (comprising 49 ash samples from combustion tests performed in 2017, and 24 ash samples from combustion tests performed during 2014-2016 at the Energy Research Center, Ostrava, Czech Republic) were analysed. Ash samples were obtained via the combustion of various solid fuels, their mixtures with municipal waste (floor coverings, paper, polyethylene terephthalate (PET) briquettes, plastics, and textiles), and municipal wood waste (furniture chipboard, window frames) in household combustion units, such as an overfire boiler, boiler with downdraft combustion, gasification boiler, automatic boiler, and stove. The aim of this study was to determine the composition of representative ash samples from solid fuels and municipal waste and to determine which parameters (metals and halides) were present in the ash analysis after waste incineration. Statistical evaluation of box plots with the determination of the boundaries for outliers and extreme values was performed. Finally, six metals (Sb, Cu, Pb, Sn, Ti, and Zn), together with chlorides, were taken as the indicators of municipal waste incineration in households. The highest value of Sb was 344 mg/kg in plastics + dry beech; the highest value of Cu was 30,500 mg/kg in textiles + black coal (B1); the highest concentration of Pb was 1,360 mg/kg in floor coverings + dry beech; the highest value of Sn was 108 mg/kg in textiles + dry beech; the highest concentration of Ti was 38,200 mg/kg in window frames; the highest value of Zn was 215,000 mg/kg in window frames; and the highest concentration of chlorides was 191,000 mg/kg in floor coverings + dry beech.

Keywords: Ash; Combustion; Households; Municipal waste; Solid fuel.

MeSH terms

  • Coal Ash*
  • Czech Republic
  • Incineration
  • Metals, Heavy*
  • Solid Waste
  • Wood

Substances

  • Coal Ash
  • Metals, Heavy
  • Solid Waste