Controlling Contact Configuration of Carboxylic Acid-Based Molecular Junctions Through Side Group

Nanoscale Res Lett. 2019 Jul 26;14(1):253. doi: 10.1186/s11671-019-3087-7.

Abstract

In this paper, the contact configuration of single molecular junction is controlled through side group, which is explored by electrochemical jump-to-contact STM break junction. The conductance values of 2-methoxy-1,3-benzenedicarboxylic acid (2-M-1,3-BDC) is around 10-3.65 G0, which is different from that of 5-methoxy-1,3-benzenedicarboxylic acid (5-M-1,3-BDC) with 10-3.20 G0. Interestingly, the conductance value of 2-M-1,3-BDC is the same as that of 1,3-benzenedicarboxaldehyde (1,3-BDCA), while single molecular junctions of 5-M-1,3-BDC and 1,3-benzenedicarboxylic acid (1,3-BDC) give out similar conductance value. Since 1,3-BDCA binds to the Cu electrode through one oxygen atom, the dominated contact configuration for 1,3-BDC is through two oxygen atoms. The different conductance values between 2-M-1,3-BDC and 5-M-1,3-BDC can be attributed to the different contact configurations caused by the position of the side group. The current work provides a feasible way to control the contact configuration between the anchoring group and the electrode, which may be useful in designing future molecular electronics.

Keywords: Carboxylic acid; Contact configuration; Cu; Scanning tunneling microscopy break junction; Side-substituted.