Brain dynamics and connectivity networks under natural auditory stimulation

Neuroimage. 2019 Nov 15:202:116042. doi: 10.1016/j.neuroimage.2019.116042. Epub 2019 Jul 22.

Abstract

The analysis of functional magnetic resonance imaging (fMRI) data is challenging when subjects are under exposure to natural sensory stimulation. In this study, a two-stage approach was developed to enable the identification of connectivity networks involved in the processing of information in the brain under natural sensory stimulation. In the first stage, the degree of concordance between the results of inter-subject and intra-subject correlation analyses is assessed statistically. The microstructurally (i.e., cytoarchitectonically) defined brain areas are designated either as concordant in which the results of both correlation analyses are in agreement, or as discordant in which one analysis method shows a higher proportion of supra-threshold voxels than does the other. In the second stage, connectivity networks are identified using the time courses of supra-threshold voxels in brain areas contingent upon the classifications derived in the first stage. In an empirical study, fMRI data were collected from 40 young adults (19 males, average age 22.76 ± 3.25), who underwent auditory stimulation involving sound clips of human voices and animal vocalizations under two operational conditions (i.e., eyes-closed and eyes-open). The operational conditions were designed to assess confounding effects due to auditory instructions or visual perception. The proposed two-stage analysis demonstrated that stress modulation (affective) and language networks in the limbic and cortical structures were respectively engaged during sound stimulation, and presented considerable variability among subjects. The network involved in regulating visuomotor control was sensitive to the eyes-open instruction, and presented only small variations among subjects. A high degree of concordance was observed between the two analyses in the primary auditory cortex which was highly sensitive to the pitch of sound clips. Our results have indicated that brain areas can be identified as concordant or discordant based on the two correlation analyses. This may further facilitate the search for connectivity networks involved in the processing of information under natural sensory stimulation.

Keywords: Cytoarchitectonic maps; Intraclass correlation; Natural auditory stimulation; Stationarity; fMRI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Adult
  • Auditory Perception / physiology*
  • Cerebral Cortex / diagnostic imaging
  • Cerebral Cortex / physiology*
  • Connectome / methods*
  • Female
  • Humans
  • Limbic System / diagnostic imaging
  • Limbic System / physiology*
  • Magnetic Resonance Imaging
  • Male
  • Nerve Net / diagnostic imaging
  • Nerve Net / physiology*
  • Visual Perception / physiology*
  • Young Adult