Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF- κ B Signaling Pathway in Human Breast Cancer Cells

Biomed Res Int. 2019 Jun 23:2019:9241769. doi: 10.1155/2019/9241769. eCollection 2019.

Abstract

Oroxylin A is a natural extract and has been reported to have a remarkable anticancer function. However, the mechanism of its anticancer activity remains not quite clear. In this study, we examined the inhibiting effects of Oroxylin A on breast cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT) and its possible molecular mechanism. The cytoactive and inflammatory factors were analyzed via Cell Counting Kit-8 assay and ELISA assay, respectively. Flow cytometry and western blotting were used to assess the cell proliferation. In addition, a wound healing assay and transwell assay were used to detect cell invasion and migration. qRT-PCR and western blot were employed to determine the effect of Oroxylin A on the EMT formation. Moreover, expression level of protein related to NF-κB signaling pathway was determined by western blot. The results revealed that Oroxylin A attenuated the cytoactivity of MDA-MB-231 cells in a dose- and a time-dependent manner. Moreover, cell proliferation, invasion, and migration of breast cancer cells were inhibited by Oroxylin A compared to the control. The mRNA and protein expression levels of E-cadherin were remarkably increased while N-cadherin and Vimentin remarkably decreased. Besides, Oroxylin A suppressed the expression of inflammatory factors and NF-κB activation. Furthermore, we also found that supplement of TNF-α reversed the effects of Oroxylin A on the cell proliferation, invasion, migration, and EMT in breast cancer cells. Taken together, our results suggested that Oroxylin A inhibited the cell proliferation, invasion, migration, and EMT through inactivating NF-κB signaling pathway in human breast cancer cells. These findings strongly suggest that Oroxylin A could be a therapeutic potential candidate for the treatment of breast cancer.

MeSH terms

  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Cadherins / metabolism
  • Cell Line, Tumor
  • Cell Movement / drug effects*
  • Cell Proliferation / drug effects*
  • Cytokines / metabolism
  • Epithelial-Mesenchymal Transition / drug effects*
  • Epithelial-Mesenchymal Transition / genetics
  • Epithelial-Mesenchymal Transition / immunology
  • Female
  • Flavonoids / pharmacology*
  • Flavonoids / therapeutic use
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • NF-kappa B / metabolism*
  • Signal Transduction / drug effects
  • Signal Transduction / genetics
  • Tumor Necrosis Factor-alpha / metabolism
  • Vimentin / metabolism

Substances

  • Cadherins
  • Cytokines
  • Flavonoids
  • NF-kappa B
  • Tumor Necrosis Factor-alpha
  • Vimentin
  • 5,7-dihydroxy-6-methoxy-2-phenylchromen-4-one