Purification, Characterization of Two Polysaccharides from Pinelliae Rhizoma Praeparatum Cum Alumine and Their Anti-Inflammatory Effects on Mucus Secretion of Airway Epithelium

Int J Mol Sci. 2019 Jul 20;20(14):3553. doi: 10.3390/ijms20143553.

Abstract

Pinelliae Rhizoma Praeparatum cum Alumine (PRPCA) is an important traditional processed herbal medicine mainly used for treating phlegm in China for more than 2000 years. In our previous studies, extraction optimization, characterization, and bioactivities of total polysaccharides from PRPCA were investigated. In this study, further purification of these polysaccharides was performed. Two polysaccharides named neutral fraction of total polysaccharides-II (TPN-II) and acidic fraction of total polysaccharides-II (TPA-II) were obtained by gradient ion-exchange chromatography followed by gel-permeation chromatography. Results of scanning electron microscopy (SEM) analysis in the present study showed that TPN-II had a tight structure with a rough and uneven surface, while TPA-II had a relative homogeneous surface and a loose structure. Further studies indicated that TPN-II was a homosaccharide mainly composed by glucose with a molecular weight of 8.0 kDa. TPA-II was mainly composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 2.1, 2.3, 1.7, 10.6, 2.6, 14.2, and 2.5, with a molecular weight of 1250 kDa. The nuclear magnetic resonance (NMR) results indicated that α and β form glycoside bonds existed in TPN-II and TPA-II, and TPN-II was composed of α-glucopyranose. In addition, both purified polysaccharides have significant anti-inflammatory effects on mucus secretion of human airway epithelial NCI-H292 cells without cytotoxicity. Compared with TPN-II, TPA-II exhibited more significant anti-inflammatory effects on lipopolysaccharide (LPS)-induced airway inflammation by regulating levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) and inhibiting mucus secretion. The results suggest that polysaccharides from PRPCA could be explored as therapeutic agents in treating inflammation and over secretion of mucus in asthma.

Keywords: Pinelliae rhizoma praeparatum cum alumine; characterization; mucus secretion; polysaccharides; purification.

MeSH terms

  • Anti-Inflammatory Agents / chemistry*
  • Anti-Inflammatory Agents / pharmacology*
  • Cell Line
  • Cell Survival / drug effects
  • Humans
  • Mucus / drug effects
  • Mucus / metabolism*
  • Pinellia / chemistry*
  • Polysaccharides / chemistry*
  • Polysaccharides / pharmacology*

Substances

  • Anti-Inflammatory Agents
  • Polysaccharides