Designing a Safe Electrolyte Enabling Long-Life Li/S Batteries

ChemSusChem. 2019 Sep 20;12(18):4176-4184. doi: 10.1002/cssc.201901770. Epub 2019 Aug 19.

Abstract

Lithium-sulfur (Li/S) batteries suffer from "shuttle" reactions in which soluble polysulfide species continuously migrate to and from the Li metal anode. As a consequence, the loss of active material and reactions at the surface of Li limit the practical applications of Li/S batteries. LiNO3 has been proposed as an electrolyte additive to reduce the shuttle reactions by aiding the formation of a stable solid electrolyte interphase (SEI) at the Li metal, limiting polysulfide shuttling. However, LiNO3 is continuously consumed during cycling, especially at low current rates. Therefore, the Li/S battery cycle life is limited by the LiNO3 concentration in the electrolyte. In this work, an ionic liquid (IL) [N-methyl-(n-butyl)pyrrolidinium bis(trifluoromethylsulfonyl)imide] was used as an additive to enable longer cycle life of Li/S batteries. By tuning the IL concentration, an enhanced stability of the SEI and lower flammability of the solutions were demonstrated, that is, higher safety of the battery. The Li/S cell built with a high sulfur mass loading (4 mg cm-2 ) and containing the IL-based electrolyte demonstrated a stable capacity of 600 mAh g-1 for more than double the number of cycles of a cell containing LiNO3 additive.

Keywords: batteries; electrolytes; ionic liquids; lithium; sulfur.