Large-scale viral genome analysis identifies novel clinical associations between hepatitis B virus and chronically infected patients

Sci Rep. 2019 Jul 19;9(1):10529. doi: 10.1038/s41598-019-46609-7.

Abstract

Despite the high global prevalence of chronic hepatitis B (CHB) infection, datasets covering the whole hepatitis B viral genome from large patient cohorts are lacking, greatly limiting our understanding of the viral genetic factors involved in this deadly disease. We performed deep sequencing of viral samples from patients chronically infected with HBV to investigate the association between viral genome variation and patients' clinical characteristics. We discovered novel viral variants strongly associated with viral load and HBeAg status. Patients with viral variants C1817T and A1838G had viral loads nearly three orders of magnitude lower than patients without those variants. These patients consequently experienced earlier viral suppression while on treatment. Furthermore, we identified novel variants that either independently or in combination with precore mutation G1896A were associated with the transition from HBeAg positive to the negative phase of infection. These observations are consistent with the hypothesis that mutation of the HBeAg open reading frame is an important factor driving CHB patient's HBeAg status. This analysis provides a detailed picture of HBV genetic variation in the largest patient cohort to date and highlights the diversity of plausible molecular mechanisms through which viral variation affects clinical phenotype.

MeSH terms

  • Adult
  • Clinical Trials, Phase III as Topic
  • Dimerization
  • Disease Progression
  • Female
  • Genome, Viral*
  • Genome-Wide Association Study
  • Hepatitis B Surface Antigens / blood
  • Hepatitis B e Antigens / blood
  • Hepatitis B e Antigens / chemistry
  • Hepatitis B e Antigens / genetics*
  • Hepatitis B virus / genetics*
  • Hepatitis B virus / isolation & purification
  • Hepatitis B, Chronic / blood
  • Hepatitis B, Chronic / virology*
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Male
  • Middle Aged
  • Models, Molecular
  • Multicenter Studies as Topic
  • Mutation, Missense
  • Open Reading Frames
  • Phenotype
  • Point Mutation
  • Protein Conformation
  • Viral Load
  • Viremia / virology*

Substances

  • Hepatitis B Surface Antigens
  • Hepatitis B e Antigens