Deep Learning to Assess Long-term Mortality From Chest Radiographs

JAMA Netw Open. 2019 Jul 3;2(7):e197416. doi: 10.1001/jamanetworkopen.2019.7416.

Abstract

Importance: Chest radiography is the most common diagnostic imaging test in medicine and may also provide information about longevity and prognosis.

Objective: To develop and test a convolutional neural network (CNN) (named CXR-risk) to predict long-term mortality, including noncancer death, from chest radiographs.

Design, setting, and participants: In this prognostic study, CXR-risk CNN development (n = 41 856) and testing (n = 10 464) used data from the screening radiography arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) (n = 52 320), a community cohort of asymptomatic nonsmokers and smokers (aged 55-74 years) enrolled at 10 US sites from November 8, 1993, through July 2, 2001. External testing used data from the screening radiography arm of the National Lung Screening Trial (NLST) (n = 5493), a community cohort of heavy smokers (aged 55-74 years) enrolled at 21 US sites from August 2002, through April 2004. Data analysis was performed from January 1, 2018, to May 23, 2019.

Exposure: Deep learning CXR-risk score (very low, low, moderate, high, and very high) based on CNN analysis of the enrollment radiograph.

Main outcomes and measures: All-cause mortality. Prognostic value was assessed in the context of radiologists' diagnostic findings (eg, lung nodule) and standard risk factors (eg, age, sex, and diabetes) and for cause-specific mortality.

Results: Among 10 464 PLCO participants (mean [SD] age, 62.4 [5.4] years; 5405 men [51.6%]; median follow-up, 12.2 years [interquartile range, 10.5-12.9 years]) and 5493 NLST test participants (mean [SD] age, 61.7 [5.0] years; 3037 men [55.3%]; median follow-up, 6.3 years [interquartile range, 6.0-6.7 years]), there was a graded association between CXR-risk score and mortality. The very high-risk group had mortality of 53.0% (PLCO) and 33.9% (NLST), which was higher compared with the very low-risk group (PLCO: unadjusted hazard ratio [HR], 18.3 [95% CI, 14.5-23.2]; NLST: unadjusted HR, 15.2 [95% CI, 9.2-25.3]; both P < .001). This association was robust to adjustment for radiologists' findings and risk factors (PLCO: adjusted HR [aHR], 4.8 [95% CI, 3.6-6.4]; NLST: aHR, 7.0 [95% CI, 4.0-12.1]; both P < .001). Comparable results were seen for lung cancer death (PLCO: aHR, 11.1 [95% CI, 4.4-27.8]; NLST: aHR, 8.4 [95% CI, 2.5-28.0]; both P ≤ .001) and for noncancer cardiovascular death (PLCO: aHR, 3.6 [95% CI, 2.1-6.2]; NLST: aHR, 47.8 [95% CI, 6.1-374.9]; both P < .001) and respiratory death (PLCO: aHR, 27.5 [95% CI, 7.7-97.8]; NLST: aHR, 31.9 [95% CI, 3.9-263.5]; both P ≤ .001).

Conclusions and relevance: In this study, the deep learning CXR-risk score stratified the risk of long-term mortality based on a single chest radiograph. Individuals at high risk of mortality may benefit from prevention, screening, and lifestyle interventions.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Aged
  • Cardiovascular Diseases / diagnostic imaging
  • Cardiovascular Diseases / mortality*
  • Clinical Trials as Topic
  • Deep Learning*
  • Female
  • Humans
  • Lung Diseases / diagnostic imaging
  • Lung Diseases / mortality*
  • Male
  • Mass Screening / statistics & numerical data
  • Middle Aged
  • Neural Networks, Computer*
  • Prognosis
  • Radiography, Thoracic / statistics & numerical data*
  • Risk Assessment / methods
  • Risk Assessment / statistics & numerical data
  • Risk Factors
  • Thorax / diagnostic imaging