Forkhead box P3 gene silencing inhibits the expression of chemokines and chemokine receptors associated with cell growth, migration, and apoptosis in hepatocellular carcinoma cells

Exp Ther Med. 2019 Aug;18(2):1091-1098. doi: 10.3892/etm.2019.7658. Epub 2019 Jun 10.

Abstract

The aberrant expression of forkhead box P3 (FOXP3) leads to the formation of malignant tumors. FOXP3 expression levels are also elevated in hepatocellular carcinoma (HCC). The aim of the present study was to investigate the effects of FOXP3 silencing on cell proliferation, migration, apoptosis and chemokine/chemokine receptor expression in the MHCC-97H HCC cell line. Three FOXP3 short hairpin (sh)RNA constructs were designed: Sh-FOXP3-1-pGreenPuro, sh-FOXP3-2-pGreenPuro, and sh-FOXP3-3-pGreenPuro. MHCC-97H cells were transfected with shRNA-FOXP3, and the mRNA and protein expression levels of C-X-C motif chemokine (CXC) ligand 12 (CXCL12), CXCL11, CXC receptor 4 (CXCR4) and CXCR7 were measured. Cell Counting Kit-8, terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling and Transwell assays were used to evaluate cell proliferation, apoptosis and migration, respectively. Of the three FOXP3 lentivirus carriers constructed, sh-FOXP3-1 significantly reduced FOXP3 expression levels and was chosen for further experiments. sh-FOXP3-1 inhibited cell proliferation, promoted apoptosis and inhibited cell migration compared with the negative control. The mRNA and protein expression levels of CXCL12, CXCL11, CXCR4 and CXCR7 were decreased significantly in response to FOXP3 silencing. FOXP3 silencing may therefore inhibit cell growth, induce apoptosis and inhibit migration in HCC cells, possibly by impairing the chemokine/chemokine receptor axes.

Keywords: apoptosis; chemokine/chemokine receptor axis; forkhead box P3; hepatocellular carcinoma; proliferation.