Neuroanatomical distribution of sensory receptors in the human elbow joint capsule

Shoulder Elbow. 2019 Aug;11(4):300-304. doi: 10.1177/1758573218760245. Epub 2018 Mar 4.

Abstract

Background: The topographic arrangement of sensory receptors in the human elbow joint capsule is pertinent to their role in the transmission of neural signals. The signals from stimuli in the joint are concisely delivered via afferent pathways to allow recognition of pain and proprioception. Sensory receptors in the elbow joint include mechanoreceptors and free nerve endings acting as nociceptors, although the distribution of each of the structures has not been determined, despite their importance for the integrity of the joint. We therefore aimed to investigate the neuroanatomical distribution and densities of mechanoreceptors and free nerve endings in the capsule of the elbow, at the same time as considering surgical approaches that would result in the minimum insult to them.

Methods: Four elbow joint capsules were harvested from fresh cadavers. The specimens were carefully separated from adjacent osteoligamentous attachments and the capsular complex was stained with a modified gold chloride method. Evaluations of free nerve endings, and Golgi, Ruffini and Pacinian corpuscles were performed under an inverted light microscope. The number and density of each structure were recorded.

Results: Ruffini corpuscles observed to be the dominant mechanoreceptor type. No Golgi corpuscle was observed. Free nerve endings were found at the highest density at posterodistal sites, whereas mechanoreceptors were most frequent at bony attachment sites.

Conclusions: A consistent distribution pattern of articular sensory receptors was observed, which allows further understanding of elbow pathology. An awareness of the neuroanatomical distribution of sensory receptors in the elbow joint capsule may allow their preservation during surgical procedures for elbow joint pathology.

Keywords: capsule; distribution; elbow; neuroanatomical; sensory receptors.