Preparation, film fabrication and gas-sensitive responsive properties of MWCNTs@PS-b-HTPB5-b-PS conductive polymer nanocomposites

Analyst. 2019 Aug 5;144(16):4897-4907. doi: 10.1039/c9an00451c.

Abstract

Novel nanocomposites consisting of polystyrene-block-polybutadienyl polyhexamethylene dicarbamate-block-polystyrene (PS-b-HTPB5-b-PS) and multiwalled carbon nanotubes (MWCNTs) were designed and prepared via noncovalent interactions. Scanning electron microscopy and transmission electron microscopy observations showed that segregated networks of MWCNTs were formed due to the cladding of PS-b-HTPB5-b-PS, presenting a parallel-arranged topology of the MWCNTs in a continuous PS-b-HTPB5-b-PS phase, which improved the dispersibility of the MWCNTs. The nanocomposites were fabricated into vapor sensing elements to detect CH2Cl2 vapor in the environment, exhibiting excellent responsive sensitivity, reproducibility and a low limit of detection (LOD) of 1 ppm when exposed to CH2Cl2 vapor. The chain extension of HTPB overcame the fragility and improved the tenacity of the thin films, and the responsivity was optimized by adjusting the content of the MWCNTs and the length of the PS chains. The newly developed conductive composites can be applied as a promising vapor sensor to accurately monitor CH2Cl2 vapor in the environment.