Modifications on the Amino-3,5-dicyanopyridine Core To Obtain Multifaceted Adenosine Receptor Ligands with Antineuropathic Activity

J Med Chem. 2019 Aug 8;62(15):6894-6912. doi: 10.1021/acs.jmedchem.9b00106. Epub 2019 Jul 26.

Abstract

A new series of amino-3,5-dicyanopyridines (1-31) was synthesized and biologically evaluated in order to further investigate the potential of this scaffold to obtain adenosine receptor (AR) ligands. In general, the modifications performed have led to compounds having high to good human (h) A1AR affinity and an inverse agonist profile. While most of the compounds are hA1AR-selective, some derivatives behave as mixed hA1AR inverse agonists/A2A and A2B AR antagonists. The latter compounds (9-12) showed that they reduce oxaliplatin-induced neuropathic pain by a mechanism involving the alpha7 subtype of nAchRs, similar to the nonselective AR antagonist caffeine, taken as the reference compound. Along with the pharmacological evaluation, chemical stability of methyl 3-(((6-amino-3,5-dicyano-4-(furan-2-yl)pyridin-2-yl)sulfanyl)methyl)benzoate 10 was assessed in plasma matrices (rat and human), and molecular modeling studies were carried out to better rationalize the available structure-activity relationships.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding, Competitive / physiology
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • Humans
  • Ligands
  • Male
  • Mice
  • Neuralgia / drug therapy
  • Neuralgia / metabolism*
  • Protein Binding / physiology
  • Purinergic P1 Receptor Agonists / chemical synthesis
  • Purinergic P1 Receptor Agonists / metabolism*
  • Purinergic P1 Receptor Agonists / therapeutic use
  • Purinergic P1 Receptor Antagonists / chemical synthesis
  • Purinergic P1 Receptor Antagonists / metabolism*
  • Purinergic P1 Receptor Antagonists / therapeutic use
  • Receptor, Adenosine A1 / metabolism*
  • Receptor, Adenosine A2A / metabolism*
  • Receptor, Adenosine A2B / metabolism*

Substances

  • Ligands
  • Purinergic P1 Receptor Agonists
  • Purinergic P1 Receptor Antagonists
  • Receptor, Adenosine A1
  • Receptor, Adenosine A2A
  • Receptor, Adenosine A2B