Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review

Crit Rev Anal Chem. 2020;50(4):322-338. doi: 10.1080/10408347.2019.1637241. Epub 2019 Jul 13.

Abstract

Nitrophenol is common carcinogenic pollutant known for its adverse effects on human beings and aquatic life. During the last few decades, the chemical reduction of nitrophenol compounds has been widely reported as the advanced removal methodology for such hazardous dyes from aqueous reservoirs. Many researchers have utilized different nanocatalytic systems using sodium borohydride (NaBH4) as the reducing agent for acquiring industrially useful reduction product of aminophenol by carrying out the chemical reduction of nitrophenols. Polymeric material supported monometallic nanoparticles are widely reported catalyst for the degradation of 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP). This review critically discusses the pros and cons of numerous supporting mediums of nanocatalytic assemblies used for the immobilization of nanomaterials. Mechanism and kinetic analysis of the reduction reaction of 2-NP and 4-NP have also been explained in this study. In addition, recent literature has also been effectively summarized in the tabular form for developing a better understanding of the reader. Pictorial representation of key nanocatalytic assemblies and catalytic reduction mechanism has also been narrated in this study.

Keywords: Kinetics; metal nanoparticles; nanocatalytic reduction; nitrophenol; pollutant.

Publication types

  • Review

MeSH terms

  • Catalysis
  • Isomerism
  • Kinetics
  • Nanostructures / chemistry*
  • Nitrophenols / chemistry*

Substances

  • Nitrophenols