Biochemical responses of rice roots to cold stress

Bot Stud. 2019 Jul 12;60(1):14. doi: 10.1186/s40529-019-0262-1.

Abstract

Background: Cold stress is the main factor that reduces rice yield in subtropical areas, especially at the seedling stage. Most of the current studies on cold stress focus the responses of rice shoots to cold stress. Limited studies are available on that of rice roots to cold stress. This study aimed to illustrate the biochemical responses of rice root under cold treatment, and subject to the establishment of cold stress-related biochemical traits for rice breeding or cropping-adjustment.

Results: Our results showed that the growth of rice seedling diminished under cold stress with difference extents among eight rice cultivars of most productive in Taiwan. Under cold treatments, the tested cultivars with higher growth rate had a higher level of hydrogen peroxide (H2O2) in the shoots but had a lower level in the roots. In contrast, the tested cultivates with low growth rate had higher levels of H2O2 in the roots but a lower level in the shoots. Meanwhile, higher MDA contents and higher cell-damage related electrolyte leakage were also found in the roots not in the shoots, suggesting that cold stress might induce oxidative stress in the roots, not in the shoots. Furthermore, the activity analysis of four antioxidant enzymes, namely superoxide dismutase (SOD), catalase (CAT), ascorbic peroxidase (APX), and glutathione reductase (GR), revealed that cold stress could increase SOD and CAT activities in the roots.

Conclusions: In summary, low H2O2 and low MDA contents along with lower SOD and CAT activities in rice root could be the biochemical traits of cold responses in rice seedlings. The results are hoping to have a contribution to the rice breeding or cropping-adjustment on cold tolerance.

Keywords: Cold responses; Oxidative stress; Rice seedling; Root.