Detection of Mycoplasma anatis, M. anseris, M. cloacale and Mycoplasma sp. 1220 in waterfowl using species-specific PCR assays

PLoS One. 2019 Jul 11;14(7):e0219071. doi: 10.1371/journal.pone.0219071. eCollection 2019.

Abstract

Mycoplasma anatis, M. anseris, M. cloacale and M. sp. 1220 colonise geese and ducks, and could be associated with infections of avian respiratory and nervous systems, cause mild to severe inflammation of cloaca and genital tracts, and embryo lethality. Co-occurrence of these Mycoplasma species in waterfowl is frequently detected and the identification of these mycoplasmas to the species level at a regular microbiology laboratory is difficult due to their similar morphological, cultural and biochemical properties. Moreover, species differentiation is only possible based on the sequence analysis of the product of a genus-specific PCR assay. Therefore, the aim of the current study was to develop an effective and robust method for the identification of these species in avian clinical specimens. Polymerase chain reaction (PCR) assays using species-specific primers, which target housekeeping genes in order to identify these species, were designed in the present study. The developed PCR assays can precisely identify these four mycoplasmas to the species level directly from DNA samples extracted from clinical specimens, and no cross-amplification was observed among these species and with other well-known avian mycoplasmas. The average sensitivity of the assays was 101-102 genomic equivalents per reaction. These conventional PCR assays can be run simultaneously at the same PCR cycling program, and the species can be differentiated directly (without sequence analysis) by gel electrophoresis due to the specific sizes of the amplicons. In conclusion, the presented species-specific assays were found to be suitable for routine use at regular veterinary diagnostic laboratories and promote the rapid, simple and cost-effective differentiation of these waterfowl Mycoplasma species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Wild / microbiology
  • Bird Diseases / microbiology
  • Birds / microbiology*
  • Chickens / microbiology
  • DNA Primers / genetics
  • DNA, Bacterial / genetics
  • Ducks / microbiology
  • Geese / microbiology
  • Genes, Bacterial
  • Mycoplasma / classification
  • Mycoplasma / genetics*
  • Mycoplasma / isolation & purification*
  • Mycoplasma Infections / microbiology
  • Mycoplasma Infections / veterinary
  • Polymerase Chain Reaction / methods*
  • Polymerase Chain Reaction / statistics & numerical data
  • Species Specificity
  • Turkeys / microbiology

Substances

  • DNA Primers
  • DNA, Bacterial

Supplementary concepts

  • Mycoplasma anatis
  • Mycoplasma anseris
  • Mycoplasma cloacale

Grants and funding

This work was funded by the Lendület (Momentum) program (LP2012-22) of the Hungarian Academy of Sciences (http://mta.hu/lendulet/) and the Élvonal KKP_19 129751 grant of the National Research, Development and Innovation Office (https://nkfih.gov.hu/palyazoknak/nkfi-alap/tamogatott-projektek-kkp-19). MG and ZK were supported by the Bolyai János Research Fellowship of the Hungarian Academy of Sciences (http://mta.hu/bolyai-osztondij/bolyaijanos-kutatasi-osztondij-105319). MG was supported by the Bolyai+ Fellowship (ÚNKP-18-4) of the New National Excellence Program of the Ministry of Human Capacities (http://www.kormany.hu/hu/emberi-eroforrasok-miniszteriuma/oktatasert-felelos-allamtitkarsag). The funders provided support in the form of salaries for authors DG, KMS, ZK, ÁBK and MG, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The TOLL 96 Kft. provided support in the form of salaries for MJK, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘authors contributions’ section.