The short- and long-term inhibitory effects of Fe (II) on anaerobic ammonium oxidizing (anammox) process

Water Sci Technol. 2019 May;79(10):1860-1867. doi: 10.2166/wst.2019.188.

Abstract

The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated. In the short-term study, results demonstrated that the optimum concentration of Fe (II) that could be added to anammox is 0.08 mM, at which specific anammox activity (SAA) improved by 60% compared to the control assay, 0.00 mM. The inhibition concentration, IC50, of Fe (II) was found to be 0.192 mM. Kinetics of anammox specific growth rate were estimated based on results of the batch test and evaluated with Han-Levenspiel's substrate inhibition kinetics model. The optimum concentration and IC50 of Fe (II) predicted by the Han-Levenspiel model was similar to the batch test, with values of 0.07 mM and 0.20 mM, respectively. The long-term effect of Fe (II) on the performance of a sequencing batch reactor (SBR) was evaluated. Results showed that an appropriate Fe (II) addition enhanced anammox activity, achieving 85% NH4 +-N and 96% NO2 --N removal efficiency when 0.08 mM of Fe (II) was added. Quantitative polymerase chain reaction (qPCR) was adopted to detect and identify the anammox bacteria.

MeSH terms

  • Ammonium Compounds*
  • Anaerobiosis*
  • Bioreactors
  • Iron / chemistry*
  • Oxidation-Reduction
  • Wastewater

Substances

  • Ammonium Compounds
  • Waste Water
  • Iron