Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems

Acc Chem Res. 2019 Aug 20;52(8):2113-2123. doi: 10.1021/acs.accounts.9b00192. Epub 2019 Jul 11.

Abstract

Historically, cancer was seen and treated as a single disease. Over the years, this image has shifted, and it is now generally accepted that cancer is a complex and dynamic disease that engages multiple progression pathways in each patient. The shift from treating cancer as single disease to tailoring the therapy based on the individual's characteristic cancer profile promises to improve the clinical outcome and has also given rise to the field of personalized cancer treatment. To advise a suitable therapy plan and adjust personalized treatment, a reliable and fast diagnostic strategy is required. The advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems that show high potential for use in personalized cancer treatment. These devices require only minute sample volumes and have the capability to create instant cancer snapshots that could be used as tool for cancer risk indication, early detection, tumor classification, and recurrence. Miniaturized systems can combine a whole sample-to-answer workflow including sample handling, preparation, analysis, and detection. As such, this concept is also often referred to as "lab-on-a-chip". An inherit challenge of monitoring personalized cancer treatment using miniaturized systems is that cancer biomarkers are often only detectable at trace concentrations present in a complex biological sample rich in interfering molecules, necessitating highly specific and sensitive biosensing strategies. To address the need for trace level detection, highly sensitive fluorescence, absorbance, surface-enhanced Raman spectroscopy (SERS), electrochemical, mass spectrometric, and chemiluminescence approaches were developed. To reduce sample matrix interferences, ingenious device modifications including coatings and nanoscopic fluid flow manipulation have been developed. Of the latter, our group has exploited the use of alternating current electrohydrodynamic (ac-EHD) fluid flows as an efficient strategy to reduce nonspecific nontarget biosensor binding and speed-up assay times. ac-EHD provides fluid motion induced by an electric field with the ability to generate surface shear forces in nanometer distance to the biosensing surface (known as nanoshearing phenomenon). This is ideally suited to increase the collision frequency of cancer biomarkers with the biosensing surface and shear off nontarget molecules thereby minimizing nonspecific binding. In this Account, we review recent advancements in miniaturized diagnostic system development with potential use in personalized cancer treatment and monitoring. We focus on integrated microfluidic structures for controlled sample flow manipulation followed by on-device biomarker interrogation. We further highlight the progress in our group, emphasis fundamentals and applications of ac-EHD-enhanced miniaturized systems, and outline promising detection concepts for comprehensive cancer biomarker profiling. The advances are discussed based on the type of cancer biomarkers and cover circulating tumor cells, proteins, extracellular vesicles, and nucleic acids. The potential of miniaturized diagnostic systems for personalized cancer treatment and monitoring is underlined with representative examples including device illustrations. In the final section, we critically discuss the future of personalized diagnostics and what challenges should be addressed to make these devices clinically translatable.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomarkers, Tumor / analysis*
  • Biosensing Techniques / methods*
  • Drug Monitoring / methods
  • Electrochemical Techniques / methods*
  • Extracellular Vesicles / chemistry
  • Humans
  • Hydrodynamics
  • Lab-On-A-Chip Devices
  • Microfluidic Analytical Techniques / instrumentation
  • Microfluidic Analytical Techniques / methods*
  • Neoplasms / diagnosis*
  • Neoplastic Cells, Circulating / chemistry
  • Precision Medicine / methods*

Substances

  • Biomarkers, Tumor