Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication

PLoS Genet. 2019 Jul 10;15(7):e1008267. doi: 10.1371/journal.pgen.1008267. eCollection 2019 Jul.

Abstract

Increasing seed oil content is one of the most important breeding goals for soybean due to a high global demand for edible vegetable oil. However, genetic improvement of seed oil content has been difficult in soybean because of the complexity of oil metabolism. Determining the major variants and molecular mechanisms conferring oil accumulation is critical for substantial oil enhancement in soybean and other oilseed crops. In this study, we evaluated the seed oil contents of 219 diverse soybean accessions across six different environments and dissected the underlying mechanism using a high-resolution genome-wide association study (GWAS). An environmentally stable quantitative trait locus (QTL), GqOil20, significantly associated with oil content was identified, accounting for 23.70% of the total phenotypic variance of seed oil across multiple environments. Haplotype and expression analyses indicate that an oleosin protein-encoding gene (GmOLEO1), colocated with a leading single nucleotide polymorphism (SNP) from the GWAS, was significantly correlated with seed oil content. GmOLEO1 is predominantly expressed during seed maturation, and GmOLEO1 is localized to accumulated oil bodies (OBs) in maturing seeds. Overexpression of GmOLEO1 significantly enriched smaller OBs and increased seed oil content by 10.6% compared with those of control seeds. A time-course transcriptomics analysis between transgenic and control soybeans indicated that GmOLEO1 positively enhanced oil accumulation by affecting triacylglycerol metabolism. Our results also showed that strong artificial selection had occurred in the promoter region of GmOLEO1, which resulted in its high expression in cultivated soybean relative to wild soybean, leading to increased seed oil accumulation. The GmOLEO1 locus may serve as a direct target for both genetic engineering and selection for soybean oil improvement.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Domestication
  • Genetic Engineering
  • Genome-Wide Association Study
  • Glycine max / genetics
  • Glycine max / growth & development*
  • Glycine max / metabolism
  • Haplotypes
  • Plant Oils / metabolism*
  • Plant Proteins / genetics*
  • Polymorphism, Single Nucleotide
  • Promoter Regions, Genetic
  • Quantitative Trait Loci
  • Seeds / chemistry*
  • Seeds / growth & development
  • Triglycerides / metabolism

Substances

  • Plant Oils
  • Plant Proteins
  • Triglycerides

Grants and funding

DZ is the recipient of Ministry of Science and Technology of China http://www.most.gov.cn/eng/ (grant number 2016YFD0100500), key scientific and technological project of Henan Province (192102110023), and the Henan agricultural university science and technology innovation fund (KJCX2019C02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.