Improving species distribution models of zoonotic marine parasites

Sci Rep. 2019 Jul 8;9(1):9851. doi: 10.1038/s41598-019-46127-6.

Abstract

Environmental niche modelling is an acclaimed method for estimating species' present or future distributions. However, in marine environments the assembly of representative data from reliable and unbiased occurrences is challenging. Here, we aimed to model the environmental niche and distribution of marine, parasitic nematodes from the Pseudoterranova decipiens complex using the software Maxent. The distribution of these potentially zoonotic species is of interest, because they infect the muscle tissue of host species targeted by fisheries. To achieve the best possible model, we used two different approaches. The land distance (LD) model was based on abiotic data, whereas the definitive host distance (DHD) model included species-specific biotic data. To assess whether DHD is a suitable descriptor for Pseudoterranova spp., the niches of the parasites and their respective definitive hosts were analysed using ecospat. The performance of LD and DHD was compared based on the variables' contribution to the model. The DHD-model clearly outperformed the LD-model. While the LD-model gave an estimate of the parasites' niches, it only showed the potential distribution. The DHD-model produced an estimate of the species' realised distribution and indicated that biotic variables can help to improve the modelling of data-poor, marine species.

MeSH terms

  • Animals
  • Aquatic Organisms / classification*
  • Ecosystem
  • Fisheries
  • Fishes / parasitology
  • Host Specificity / physiology
  • Parasites / classification*
  • Species Specificity