Biomechanical behaviour of bulk-fill resin composites in class II restorations

J Mech Behav Biomed Mater. 2019 Oct:98:255-261. doi: 10.1016/j.jmbbm.2019.06.032. Epub 2019 Jul 2.

Abstract

The aim of this study was to evaluate the biomechanical properties expressed by shrinkage stress, cuspal strain, fracture strength and failure mode in molars with large class II mesio-occlusal-distal restorations. Sixty-four human caries-free third molars were selected and distributed randomly into four groups: Z100 restorative material (Z100), Tetric N-Ceram Bulk-Fill (TNC), Filtek Bulk-Fill (FBF) and Aura Ultra Universal (ABF). The bulk-fill materials were inserted in one singular bulk increment and the conventional composite resin in three ones. Polymerisation shrinkage stress was evaluated by optical Fibre Bragg Gratings (FBG) sensors (n = 6). The cuspal deformation was measured using an extensometer during three moments: restorative procedure, axial compressive loading and at fracture (n = 10). The fracture strength was evaluated on a universal machine. The failure mode was analysed by Scanning Electron Microscopy (SEM). Data were analysed using one-way ANOVA tests with Tukey's posthoc test (α = 5%). Data of the failure mode were submitted to a likelihood ratio chi-square test. Z100 presented the highest mean value for the shrinkage stress (p < 0.05) by FBG evaluation, whereas bulk-fill resin groups presented low polymerisation stress mean value, especially the TNC (p < 0.05). The cuspal deformation test showed that Z100 presented a significant difference mean value compared to the other groups (p < 0.01) during the restoration and compressive axial force; however, load until the fracture presented a difference only between TNC and FBF (p < 0.05). The fracture strength of TNC was statistically different from Z100 (p < 0.01). The failure mode was not statistically different in all the groups (p > 0.05). Bulk-fill composites promoted less polymerisation shrinkage stress than conventional microhybrid composite during and after the light curing process in class II posterior resin composite restorations.

Keywords: Composite resins; Fibre optical technology; Polymerisation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Composite Resins*
  • Dental Restoration, Permanent*
  • Materials Testing*
  • Mechanical Phenomena*

Substances

  • Composite Resins