Oxygen-vacancy-rich nickel-cobalt layered double hydroxide electrode for high-performance supercapacitors

J Colloid Interface Sci. 2019 Oct 15:554:59-65. doi: 10.1016/j.jcis.2019.06.095. Epub 2019 Jun 29.

Abstract

The introduction of oxygen vacancies into electrode materials has been proven to be a valid way to enhance the electrochemical performance. However, the traditional methods to introduce oxygen vacancies require severe conditions that may be harmful to hydroxides. Herein, the oxygen vacancy-rich nickel-cobalt (NiCo) layered double hydroxide (denoted as Vo-NiCo LDH) nanowire array electrode is synthesized using the chemical reduction method. Owing to the reduction of NaBH4 solution, we can create oxygen vacancies under milder conditions, thus avoiding any damage to the hydroxide. The as-synthesized electrode shows a specific capacitance of 1563.1 F g-1 at 1 A g-1, which is much higher than that of the pristine electrode (995.4 F g-1 at 1 A g-1). Moreover, the cycling performance and rate performance are also enhanced. The as-fabricated asymmetric supercapacitor (Vo-NiCo LDH//Fe2O3) is able to deliver a maximum energy density of 56.2 W h kg-1 at a power density of 800 W kg-1 with a voltage window of 1.6 V.

Keywords: Chemical reduction; NiCo LDH; Oxygen vacancies; Supercapacitor.