Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction

Nat Commun. 2019 Jul 5;10(1):2980. doi: 10.1038/s41467-019-10854-1.

Abstract

Developing highly efficient electrocatalysts based on cheap and earth-abundant metals for CO2 reduction is of great importance. Here we demonstrate that the electrocatalytic activity of manganese-based heterogeneous catalyst can be significantly improved through halogen and nitrogen dual-coordination to modulate the electronic structure of manganese atom. Such an electrocatalyst for CO2 reduction exhibits a maximum CO faradaic efficiency of 97% and high current density of ~10 mA cm-2 at a low overpotential of 0.49 V. Moreover, the turnover frequency can reach 38347 h-1 at overpotential of 0.49 V, which is the highest among the reported heterogeneous electrocatalysts for CO2 reduction. In situ X-ray absorption experiment and density-functional theory calculation reveal the modified electronic structure of the active manganese site, on which the free energy barrier for intermediate formation is greatly reduced, thus resulting in a great improvement of CO2 reduction performance.