A Ratiometric Fluorescent Nano-Probe for Rapid and Specific Detection of Tetracycline Residues Based on a Dye-Doped Functionalized Nanoscaled Metal-Organic Framework

Nanomaterials (Basel). 2019 Jul 4;9(7):976. doi: 10.3390/nano9070976.

Abstract

Tetracycline (TC) residues are harmful to the environment and human body, so it is necessary to develop a highly sensitive probe for rapid detection of tetracycline residues. In the present paper, a novel dye-doped porous metal-organic framework (UiO-66)-based multi-color fluorescent nano-probe was designed for sensitive ratiometric detection of tetracycline (TC). In this probe, dye-molecules doped UiO-66 was used as a fluorescent internal standard, and the externally grafted lanthanide Eu3+ complex was used as response signals. The fluorescence of the Eu3+ complex was selectively enhanced with increasing concentrations of TC, which was accompanied by a visual blue-to-red color switch. The nano-probe had a linear response between 0.1 and 6 μM with a lowest detection limit of 17.9 nM, which was much lower than the maximum residue limits set by the United States Food and Drug Administration (676 nM) and the European Union (225 nM). The applicability of this method in the analysis of actual samples was evaluated by the determination of TC in honey and milk samples, indicating satisfactory recovery and good reproducibility. In addition, a cost-effective paper-based probe for rapid and visual detection of TC was developed by fixing the nano-probe on filter papers. With the help of a smartphone camera to capture the fluorescence color, and chromaticity analysis software, the calculation and analysis of red (R) and blue (B) values can be realized, which has the potential for real-time visual detection of TC.

Keywords: lanthanide probe; metal–organic framework; multi-color fluorescence; tetracycline; visual detection.