Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney

J Biol Chem. 2019 Aug 23;294(34):12695-12707. doi: 10.1074/jbc.RA119.007575. Epub 2019 Jul 2.

Abstract

Transforming growth factor-β1 (TGF-β)-induced fibrotic and inflammatory genes in renal mesangial cells (MCs) play important roles in glomerular dysfunction associated with diabetic nephropathy (DN). TGF-β regulates gene expression in MCs by altering key chromatin histone modifications at target gene promoters. However, the role of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification is unclear. Here we show that TGF-β reduces H3K27me3 at the Ctgf, Serpine1, and Ccl2 gene promoters in rat MCs (RMCs) and reciprocally up-regulates the expression of these pro-fibrotic and inflammatory genes. In parallel, TGF-β down-regulates Enhancer of Zeste homolog 2 (Ezh2), an H3K27me3 methyltransferase, and decreases its recruitment at Ctgf and Ccl2 but not Serpine1 promoters. Ezh2 knockdown with siRNAs enhances TGF-β-induced expression of these genes, supporting its repressive function. Mechanistically, Ezh2 down-regulation is mediated by TGF-β-induced microRNA, miR-101b, which targets Ezh2 3'-UTR. TGF-β also up-regulates Jmjd3 and Utx in RMCs, suggesting a key role for these H3K27me3 demethylases in H3K27me3 inhibition. In RMCs, Utx knockdown inhibits hypertrophy, a key event in glomerular dysfunction. The H3K27me3 regulators are similarly altered in human and mouse MCs. High glucose inhibits Ezh2 and increases miR-101b in a TGF-β-dependent manner. Furthermore, in kidneys from rodent models of DN, fibrotic genes, miR-101b, and H3K27me3 demethylases are up-regulated, whereas Ezh2 protein levels as well as enrichment of Ezh2 and H3K27me3 at target genes are decreased, demonstrating in vivo relevance. These results suggest that H3K27me3 inhibition by TGF-β via dysregulation of related histone-modifying enzymes and miRNAs augments pathological genes mediating glomerular mesangial dysfunction and DN.

Keywords: Ezh2; H3K27me3; diabetic nephropathy; epigenetics; fibrosis; histone demethylases; histone methylation; histone modifications; inflammation; mesangial cells; microRNA (miRNA); transforming growth factor beta (TGF-β).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Diabetes Mellitus, Type 1 / chemically induced
  • Diabetes Mellitus, Type 1 / genetics
  • Diabetes Mellitus, Type 1 / metabolism*
  • Diabetic Nephropathies / chemically induced
  • Diabetic Nephropathies / genetics
  • Diabetic Nephropathies / metabolism*
  • Gene Expression Regulation*
  • Histones / metabolism*
  • Humans
  • Injections, Intraperitoneal
  • Lysine / metabolism*
  • Male
  • Mesangial Cells / metabolism*
  • Methylation
  • Mice
  • Mice, Inbred C57BL
  • Rats
  • Rats, Sprague-Dawley
  • Streptozocin / administration & dosage
  • Transforming Growth Factor beta1 / metabolism*

Substances

  • Histones
  • Transforming Growth Factor beta1
  • Streptozocin
  • Lysine